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Task-Completion System (General)
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TAP, Spin glass




Task-Completion System (Particular)
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Conservative PDES
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One spin per PE



A fundamental question of computing: Scalability
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Mapping to surface growth problem

Computation Scalability Measurement Scalability

# of non-idling PEs = =
S < total # of PEs(L) > = <




BCS in 1D (Ring Topology)

This surface growth model is independent on the object of
simulation, it corresponds to the massively parallel algorithm.

# of non-idling PEs

i
T total # of PEs (L)

= density of local minima
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n; is independent of ¢,7, and {7;}




BCSin 1D
Slope variables: ¢z — Ti—Ti=—=1
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BCSin 1D

Due to translational invariance:

mean velocity of the surface = | (j) | = (u)

1
Naive coarse-graining: @(qﬁ) — lim @(¢) — lim _[1 —+ tanh ?]
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To leading order in ¢/k
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In the continuum limit:
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Burger's equation for the coarse-grained field




BCSin 1D

1D short-range network 1 D short-range network

E T HJ;III T [

? F<w >/N

TTITT
2a

+

w' 1wt 1w 1
N=100
N=200
N=500 ]
N=1000 1
N=2000 A
N=5000 1
N=10000
N=20000

—
e
L

10

N




ST

1D short-range network 1D short-range network
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BCSin 1D

1D short-range network 1D short-range network
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Finite utilization = computationally scalable
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Regular Network Small-World Network
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Hastings, PRL (2003); Kozma et al., PRL (2003); Korniss et al., Science (2003)




1D SW network (p=0.1) 1D SW network
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SW in 1D

1D SW network
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Finite width = measurement scalable




1D SW network (p=1) 1D SW network
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Edwards-Wilkinson Process on a network

G. Korniss et.al., cond-mat/0508056

ZA’U hj) + ni(t)

Consider:

where h; (t) is a scalar at a node (stochastic field variable such as virtual time)

Ni (t) is delta-correlated white noise with zero mean and variance

(ma(t)n;(t)) = 20456(t — 1)
A;; = Aj; isthe effective coupling between nodes iandj, A;; =0

Defining the Network Laplacian:

(1) becomes:




The steady-state 2-point equal time correlation function is given by:

> denotes averaging over noise

I'! istheinverse of T inthe space orthogonal to the zero mode.

{ Ak {%bkz } k=0,N—1 are the k' eigenvalues and normalized
eigenvectors.

k = (O represents the zero mode of the network where )\g =0

Thus
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For large systems and quenched network disorder, typically we have self-averaging:

<w2> ~ [<w2>] =——> calculate [Gm] get N — oo limit




Summary and Conclusions

BCS exhibits KPZ-like roughening.

SW-synchronized task-completion systems exhibit mean-field like
characteristics.

SW links generate an effective mass for the propagator of the virtual time
horizon (in a field theory sense) corresponding to a finite correlation length
and consequently the width becomes finite for an arbitrary small rate of
synchronization through SW links while the utilization remains nonzero,
yielding a fully scalable task-completion scheme.

Systems exhibit (strict or anomalous) mean-field-like behavior when the
original short-range interaction topology 1s modified to a SW network.
When the interaction topology in a network is changed into SW; the extreme
fluctuations diverge weakly (logarithmically) and in a power-law fashion with
the system size when the noise 1s short-tailed and heavy-tailed, respectively.
Our work 1s applicable to systems with “local” relaxation in a noisy
environment.
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